Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring.
نویسندگان
چکیده
Increasing adiposity predisposes to the development of the metabolic syndrome, in part, through adipose tissue dysregulation and inflammation. In addition, offspring nutrient-restricted (NR) in utero can exhibit an increased risk of early-onset insulin resistance and obesity, although the mechanisms remain unclear. We aimed to: 1) define adipose tissue ontogeny of key proinflammatory and endoplasmic reticulum stress gene expression from late fetal to early adult life and 2) examine the impact on these genes in gestational nutrient restriction. Pregnant sheep were fed 100% (control) or 50% (NR) of their nutritional requirements between early to mid (28-80 d, term approximately 147 d) or late (110-147 d) gestation. In control offspring, toll-like receptor 4 (TLR4), and the macrophage marker CD68, peaked at 30 d of life before declining. IL-18 peaked at 6 months of age, whereas the endoplasmic reticulum chaperone glucose-regulated protein 78 peaked at birth and subsequently declined through postnatal life. TLR4 and CD68 positively correlated with relative adipose tissue mass and with each other. Early to midgestational NR offspring had decreased abundance of IL-18 at 6 months of age. In late gestational NR offspring, CD68 was significantly lower at birth, a pattern that reversed in juvenile offspring, coupled with increased TLR4 abundance. In conclusion, the in utero nutritional environment can alter the adipose tissue inflammatory profile in offspring. This may contribute to the increased risk of insulin resistance or obesity, dependent on the timing of nutrient restriction. Establishing the optimal maternal diet during pregnancy could reduce the burden of later adult disease in the offspring.
منابع مشابه
Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2.
Increased glucocorticoid action and adipose tissue inflammation contribute to excess adiposity. These adaptations may be enhanced in offspring exposed to nutrient restriction (NR) in utero, thereby increasing their susceptibility to later obesity. We therefore determined the developmental ontogeny of glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase (11betaHSD) types 1 and 2, an...
متن کاملMaternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring.
Maternal diet during pregnancy can program an offspring's risk of disease in later life. Obesity adversely alters renal and adipose tissue function, resulting in chronic kidney disease and insulin resistance, respectively, the latter associated with dysregulation of the unfolded protein response (UPR). In view of the current obesity epidemic, we explored the combined effects of in utero early- ...
متن کاملMaternal nutritional manipulations program adipose tissue dysfunction in offspring
Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of devel...
متن کاملOntogeny and nutritional manipulation of mitochondrial protein abundance in adipose tissue and the lungs of postnatal sheep.
The present study examined the ontogeny of mitochondrial protein abundance in adipose tissue and lungs over the first month of life in the sheep and the extent to which this may be altered by maternal undernutrition during the final month of gestation. The ontogeny of uncoupling protein (UCP), voltage-dependent anion channel (VDAC) and cytochrome c abundance were determined in adipose tissue an...
متن کاملGestational programming: population survival effects of drought and famine during pregnancy.
The process whereby a stimulus or stress at a critical or sensitive period of development has long-term effects is termed "programming." Studies in humans and animals convincingly demonstrate that environmental perturbations in utero may permanently change organ structure and metabolism and/or alter homeostatic regulatory mechanisms among the offspring. These programmed changes may be the origi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Endocrinology
دوره 150 8 شماره
صفحات -
تاریخ انتشار 2009